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AN	INNOVATIVE	APPROACH
INTEGRATING	LIDAR	PROCESSING	WITH
MACHINE	LEARNING

Monitoring	3D	Urban	Growth
This	innovative	approach	to	measuring	3D
urban	growth	integrates	Lidar	processing
with	machine	learning.	It	takes	account	of
the	specific	needs	of	urban	planners,	is
less	complicated	to	run	and	addresses	the
problem	of	monitoring	3D	urban	growth
over	time	at	building	scale.

Automated	measurement	of	the	third
dimension	of	urban	growth	is	a	crucial
requirement	for	future	urban	planning	and
monitoring.	Airborne	Lidar	is	increasingly
being	used	to	produce	regular	time-based
data	over	metropolitan	areas.	However,
the	current	solutions	ignore	the	specific
needs	of	urban	planners,	are	complicated
to	run	and	fail	to	address	the	problem	of
monitoring	3D	urban	growth	over	time	at
building	scale.	To	address	the	current
challenges,	two	possible	solutions	have
been	developed	into	an	integrated
procedure.

Urban	planners	want	to	automatically
estimate	all	three	dimensions	and	model
the	changes	to	buildings,	the	building
footprints	and	absolute	height	information
over	time	to	monitor	growth	and	predict
change	patterns	accurately.	To	monitor
changes	to	buildings	over	time	using
airborne	Lidar	data,	there	are	two	possible
solutions	for	processing	the	data,	as	listed

below.	This	article	investigates	which	of	these	two	possible	solutions	is	the	preferred
solution,	and	which	is	able	to	best	determine	the	magnitude	of	change	in	the	heights	of	the
buildings.

Solution	1:	Classification	of	buildings	using	temporal	Lidar	datasets	and	the	determination
of	the	magnitude	of	changes	by	comparing	the	extracted	building	heights.	For	this	solution,
two	approaches	were	tested:	a	pixel-based	approach	using	a	machine	learning	algorithm
known	as	Support	Vector	Machines	(SVM),	and	a	point-based	approach	using	a	tool	from
ERDAS	IMAGINE	which	is	a	software	solution	for	processing	data	acquired	by	remote
sensing	and	photogrammetry	technologies.
Solution	2:	Application	of	a	change	detection	algorithm	to	temporal	Lidar	datasets	and	the

determination	of	whether	or	not	changes	have	occurred	in	a	building	class.	For	this	solution,	two	pixel-based	algorithms	were
applied,	namely	SVM	and	image	differencing.

Figure	1:	Airborne	Lidar	over	the	UNSW	campus	in	2005.

Data	processing



To	investigate	the	solutions,	bi-temporal	airborne	Lidar	datasets	are	required	as	a	minimum.	In	this	research,	the	datasets	used	were
collected	in	2005	and	2008	above	the	University	of	New	South	Wales	(UNSW)	campus	in	Sydney,	Australia.	Lidar	data	is	usually
represented	by	points;	however,	it	can	also	be	converted	to	pixels	containing	XYZ	information	of	the	points	within	the	pixels.	The	resultant
raster	data	is	called	a	digital	surface	model	(DSM).	The	UNSW	Lidar	dataset	DSM	covers	plain,	sloping	and	complex	urban	scenes	with
various	sizes	of	urban	objects	(Figure	1).

Before	applying	any	algorithm,	some	pre-processing	is	required.	Removing	outliers	from	the	datasets	is	a	key	preparatory	task	for	both
building	classification	(Solution	1)	and	change	detection	(Solution	2).	In	this	case	outliers	can	be	generated	by	the	measurement	process
(measurement	noise)	or	constitute	height	points	that	do	not	contribute	to	the	change	detection	process	of	urban	buildings.	Outliers
observed	in	the	2008	dataset	include	construction	machinery	such	as	tower	cranes	(Figure	2).	

For	Solution	1	(building	classification),	SVM	was	applied	to	both	the	2005	and	2008	datasets.	In	addition,	the	point-based	classification	tool
in	the	ERDAS	software	was	used.	For	Solution	2	(change	detection),	image	differencing	and	SVM	were	used	on	the	time-series	pixels.

Figure	2:	Tower	cranes	are	noise	to	be	removed	from	this	2008	Lidar	dataset	in	the	data	preparation	step.

Results
The	research	showed	that	Solution	1	using	building	classification	of	time-series	Lidar	data	for	monitoring	3D	urban	growth	is	time
consuming,	cumbersome,	complex	for	non-experts	and	less	accurate	than	using	a	change	detection	algorithm.	As	demonstrated	in	Figure
3,	the	building	classification	using	SVM	for	2005	data	shows	significant	misclassifications	between	roads	and	buildings	in	sloping	terrain,
which	is	the	result	of	classifying	the	boundaries	of	buildings	as	trees.	This	is	in	line	with	previous	experimentation	by	the	authors	in	the
same	area.	This	problem	can	probably	be	remedied	by	adding	aerial	image	data	and	stacking	the	resulting	RGB	layers	as	additional	layers
for	the	SVM	method.	Since	temporal	aerial	images	were	not	available,	further	work	on	improving	the	SVM	result	using	additional	images
was	not	possible.

Figure	3:	Building	classification	of	2005	Lidar	data	using	SVM.

Next,	the	classification	tool	in	ERDAS	was	tested	for	its	suitability	for	the	point-based	approach	for	Solution	1	(building	classification).	The
algorithm	in	ERDAS	requires	a	number	of	parameters	that	have	to	be	set	interactively	until	the	best	result	is	obtained	for	the	area	under
study	(Table	1).	With	the	chosen	parameter	thresholds,	there	was	no	problem	of	misclassification	between	roads	and	buildings	in	sloping
terrain.	However,	visual	comparison	of	classified	buildings	still	showed	some	discrepancies	among	the	results	of	unchanged	building
points	(Figures	4	and	5).	Another	inconsistency	can	be	seen	in	the	level	of	omission	errors	in	classified	buildings	of	the	two	datasets,	which
is	higher	in	the	2005	dataset	than	in	the	2008	dataset.	This	inconsistency	is	an	important	issue	for	the	determination	of	volumetric
elements	and	pixel-based	spatiotemporal	building	volume	change	calculations	for	an	urban	area	over	time.
Parameter Threshold
Min.	slope 30°
Plane	offset 1m
Min.	height 0m
Min.	area 100m2

Max.	area 10,000m2

Roughness 0.3m

Table	1:	Parameters	used	in	ERDAS.

Solution	2	(change	detection)	using	image	differencing	is	less	complicated	than	the	procedure	described	above.	However,	this	method
entails	problems	such	as	a	high	level	of	noise	which	causes	a	significant	‘salt	and	pepper	effect’.	For	the	SVM	method	applied	for	Solution
2,	there	is	a	lack	of	extraction	of	the	magnitude	of	the	height	change.	Other	types	of	errors	occur	in	building	boundaries,	and	missing	data
causes	errors	that	affect	the	results	of	DSM	differencing.

Figure	4:	Building	points	extracted	from	2005	Lidar	data	and	classified	by	object-based	methods	in	ERDAS.

Integrating	the	two	methods
Considering	the	advantage	of	SVM	giving	a	smaller	salt	and	pepper	effect	and	the	benefit	of	the	image	differencing	method	for	providing
the	magnitude	of	height	change,	integrating	the	two	would	address	both	issues,	as	demonstrated	in	Figure	6.	For	this	solution,	additional
post-processing	is	recommended	to	determine	to	which	specific	class	the	detected	changes	belong:	building,	vegetation,	road,	etc.
Depending	on	the	aim	of	the	research,	it	might	be	necessary	to	remove	all	unwanted	items.	For	example,	if	3D	changes	of	buildings	are
important	for	sustainability	studies,	all	other	classes	should	be	removed	from	the	integrated	result.

Figure	5:	Building	point	extracted	from	2008	Lidar	data	and	classified	by	object-based	methods	in	ERDAS.

Conclusion
With	the	post-processed,	integrated	result,	urban	planners	would	be	able	to	determine	the	changes	in	the	magnitude	of	building	heights
rather	than	making	an	overall	less	accurate	estimation	achieved	by	using	either	of	the	conventional	techniques	separately.	Accurate
vertical	changes	enable	policymakers	to	estimate	‘mass	to	voids’	and	‘buildings	to	green	space’	ratios,	which	would	consequently	increase
the	application	of	airborne	Lidar	for	the	built	environment.		
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Figure	6:	The	results	from	the	new	solution	combining	a	machine	learning	algorithm	with	DSM	differencing.
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