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OSâ€™s	Approach	to	Machine
Learning	for	Inference	and
Discovery	using	Imagery

For	227	years,	Ordnance	Survey’s	role
has	been	to	create	usable	representations
of	the	landscape	to	respond	to	the
changing	needs	of	our	customers.	We
map	physical	aspects	of	the	landscape
such	as	the	locations	of	buildings	and	field
boundaries	and	the	shape	of	the	terrain.
However,	customers’	needs	are	changing
and	becoming	increasingly	complex	and
bespoke.	For	a	few	years,	we	have	been
looking	at	novel	approaches	to	responding
to	our	customers’	requirements.

The	majority	of	OS’s	customers	are	within
the	UK	Government.	Through	our
engagement	activities,	we	have	identified
a	wish	list	of	hundreds	of	real-world
features	and	characteristics	that	our
customers	would	like	us	to	capture.	It
would	be	both	expensive	and	time-
consuming	to	create	a	new	approach	to

capture	each	item	on	the	wish	list	and	so	we	are	working	on	an	entirely	different	approach	using	deep	learning.	We	believe	our	approach
will	enable	the	rapid	development	of	bespoke	products	and	services	that	respond	to	changing	customer	needs.	It	has	not	been	a	smooth
ride	from	the	early	days	of	the	idea	and	there	is	still	a	lot	of	work	to	do.

Exploiting	Aerial	Imagery
Ordnance	Survey	products	are	derived	mostly	from	a	combination	of	field	survey	and	remote	sensing.	We	can	acquire	aerial	imagery
during	a	long	flying	season	which	can	last	from	March	to	November	each	year;	being	at	least	25cm	pixel	resolution,	these	highly	detailed
images	contain	a	great	deal	more	information	than	we	can	possibly	process.	We	know	there	is	more	that	could	be	derived	from	our	large
archive	of	imagery	and	we	are	keen	to	find	automatic	means	to	extract	new	detail	from	this	data.

For	example,	in	figure	1,	it	is	possible	to	identify	the	detail	that	we	currently	capture,	such	as	roads,	buildings	and	railway	tracks,	but
different	regions	and	types	of	development	can	be	identified,	such	as	differences	in	the	type	of	housing	or	industrial	land	use.	Shapes	or
materials	of	roofs	can	also	be	identified.	The	time	of	day	and	time	of	year	can	be	inferred,	based	the	vegetation,	shadow	and	traffic.	These
things	can	be	characteristic	patterns	that	will	manifest	repeatedly	in	a	large	dataset.	By	creating	methods	to	automatically	find	these
repeating	patterns	in	our	data	archive	we	hope	to	pull	out	considerably	more	detail	than	we	are	currently	able.	In	finding	these	repeated
patterns,	we	will	be	able	to	process	the	imagery	not	as	an	array	of	pixels,	but	as	a	set	of	descriptions	of	the	landscape.	We	believe	that
landscape	descriptors	will	enable	us	to	directly	respond	to	customer	demands	and	discover	new	ways	of	representing	the	landscape	–	we
call	these	two	aspects	of	our	work	Inference	and	Discovery.

Background	Research
Research	in	this	field	was	started	in	2015,	when	we	set	up	a	post-doctoral	project	at	the	University	of	Southampton,	in	conjunction	with
Lancaster	University.	At	this	stage,	we	only	knew	that	representation	learning	had	recently	made	some	very	large	leaps	in	development,
and	that	we	wanted	to	know	how	we	could	apply	it	to	our	data.

Most	of	the	advances	in	representation	and	machine	learning	used	specialised	datasets,	such	as	the	ImageNet	dataset	(Deng,	et	al.
2009),	which	comprises	images	of	a	few	hundred	pixels	portraying	objects	(including	animals),	each	image	being	labelled	with	the	objects’
name.

By	contrast,	our	aerial	images	are	big	–	several	thousand	rows	and	columns	of	pixels.	Further,	they	are	not	‘composed’	and	so	don’t	have
a	natural	foreground	and	background	composition,	and	there	is	no	obvious	label	for	an	aerial	image.	We	needed	to	determine	how	to	apply



the	technology	that	had	been	developed	using	datasets	like	ImageNet	to	our	specific	domain	of	data.

Over	the	course	of	the	study,	we	tried	different	approaches	to	representation	learning,	settling	on	deep	convolutional	neural	networks
(DCNN),	in	which	many	layers	of	convolutional	filters	(sometimes	called	nodes)	are	learned	using	back-propagation.	These	networks	are
easier	to	create	using	one	of	the	many	frameworks	that	are	now	available	that	allow	us	to	design	networks	more	easily	or	re-use	network
architectures	‘off	the	shelf’.	We	tested	several	frameworks	for	deep	learning	before	settling	on	Keras	(Chollet	2018).	We	also	developed
approaches	to	cutting	up	the	aerial	imagery	into	patches	(like	those	in	figure	3)	and	labelling	them	using	our	topographic	vector	data.	We
used	these	labelled	patches	taken	from	imagery	of	Southampton	to	train	our	first	deep	network	using	the	architecture	known	as	AlexNet
(Krizhevsky	2012),	which	has	13	layers,	and	then	moved	onto	the	50-layer	ResNet-50	(He,	et	al.	2015).

Imagery	for	Training	DCNN
The	most	common	approach	to	training	convolutional	neural	networks	is	with	thousands	or	millions	of	image-label	pairs.	The	image	is
presented	at	the	network	input	and	‘forward-propagated’	through	to	a	final	layer	that	predicts	the	image	label.	During	training,	the	error	of
prediction	is	assessed	and	used	to	adjust	the	network	weights	so	that	during	subsequent	iterations	the	predictions	become	more	accurate.
One	issue	with	deep	networks	is	the	requirement	for	so	many	labelled	images.	In	many	datasets,	this	labelling	is	done	by	hand.	We
realised	that	we	were	very	lucky	to	have	a	vector	dataset	that	parallels	our	imagery	and	so	used	this	to	label	our	patches	of	aerial	imagery.

Training	our	first	deep	network	required	some	heavy-lifting	gear	in	terms	of	processing	power	(NVidia	Titan	X	GPU),	especially	as	we	were
trying	to	parallel	the	progress	made	in	training	deep	networks	with	the	ImageNet	imagery	by	training	with	a	similar	number	(1.2	million)	of
patches.	The	first	ResNet-50	started	with	weights	that	had	previously	been	learned	using	ImageNet,	that	were	then	adjusted,	or	‘fine-
tuned’,	with	our	Southampton	aerial	imagery	–	firstly	adjusting	only	the	final	layer	or	weights	and	then	later	allowing	all	the	weights	in	the
network	to	update.	For	comparison,	we	also	trained	a	ResNet-50	‘from	scratch’	–	that	is	starting	with	a	randomised	set	of	initial	weights.

Responding	to	Customer	Needs
Finally,	we	could	start	to	challenge	our	belief	that	this	approach	would	extract	representations	that	would	allow	us	to	rapidly	respond	to
customer	needs.	To	test	this,	we	identified	problems	that	needed	resolving	to	improve	some	of	our	capture	processes.	These	included:

the	recognition	of	inland	water,
the	differentiation	of	metalled	and	unmetalled	roads;	and
the	detection	of	playgrounds.

	

With	a	small	dataset	of	patches	giving	positive	and	negative	examples	for	these	problems,	we	tested	the	two	trained	networks	(‘FineTuned
Weights’	and	‘ScratchTrained	Weights’)	against	a	network	only	trained	with	ImageNet	data	(‘ImageNet	Weights’).	We	also	obtained	a	12	x
12	square	of	pixels	directly	from	the	centre	of	the	image	patch	to	produce	a	set	of	values	of	equivalent	size	to	later	layers	in	the	deep
networks	so	that	we	could	compare	the	networks	against	the	original	image	values	(‘Image	Values’).	We	obtained	values	for	each	of	the
three	networks	by	forward-propagating	the	patches	through	the	networks	and	extracting	values	at	each	filter.	These	values,	and	the	values
taken	directly	from	the	image	patches,	were	then	used	as	inputs	to	train	shallow	machine	learning	models	(Support	Vector	Machines)	to
assess	how	good	models	learned	using	different	sets	of	values	performed	against	each	of	the	problems.

We	trained	support	vector	machines	with	values	taken	from	different	layers	of	the	networks	and	against	each	of	the	classification	problems
and	repeated	each	of	these	with	different	random	selections	of	the	training	and	testing	data.	From	this	we	obtained	hundreds	of
classification	results.

First	Results
In	our	initial	results,	we	didn’t	expect	to	find	that	the	ImageNet-trained	network	was,	on	the	whole,	producing	better	values	for	solving	these
problems	than	either	of	the	networks	that	we	had	trained	with	aerial	imagery.	Despite	this	poor	validation	of	our	approach,	we	were	sure
that	if	good	results	were	achievable	with	a	network	trained	only	with	ImageNet,	amazing	results	must	be	possible	with	a	dataset	that	was	in
our	domain	–	aerial	imagery.	Whilst	the	inference	goal	of	our	work	didn’t	seem	to	be	going	quite	to	plan,	we	also	wanted	to	investigate	how
well	our	deep	networks	were	discovering	new	ways	of	representing	the	landscape.	Many	commentators	describe	neural	networks	as	‘black
boxes’	inside	which	the	decision-making	process	is	undiscoverable.	However,	alongside	developments	in	deep	learning	approaches,	there
have	been	developments	in	interrogating	what	the	networks	are	responding	to.	We	have	started	looking	at	different	approaches	to
interrogating	the	trained	network,	some	of	which	look	at	what	individual	filters	in	the	network	respond	to,	and	others	which	try	to	consider
the	activity	of	the	entire	network.

A	reasonable	assumption	was	that	our	training	data	was	not	representing	the	real-world	well	enough	to	train	a	deep	network	that	detected
the	characteristic	patterns	in	the	landscape	that	we	could	interpret	or	would	be	useful	for	inference.	We	needed	to	improve	this	data.

Next,	we	looked	at	building	a	training	dataset	that	represented	the	whole	of	Great	Britain.	We	chose	flying	blocks	from	around	the	country
and	created	more	consistent	data	labels	using	principles	based	on	the	knowledge	that	deep	convolutional	networks’	filters	respond	most	to
the	centre	of	the	image	patches	(Zemel	2017).	The	resulting	training	patches,	grouped	into	12	equally-sized	classes,	certainly	looked
much	more	coherent,	but	had	it	been	worth	the	effort?

We	had	improved	our	training	time	and	refined	our	training	data.	We	were	ready	to	train	a	new	deep	network	and	run	some	tests,	but	first
we	needed	one	final	tweak	–	we	needed	a	name	for	our	trained	networks	that	could	be	incremented	as	we	iterated	through	all	our	different
options.	We	called	the	new	network	TopoNet	and	we	now	add	a	suffix	that	indicates	the	data	and	network	version.

We	carried	out	a	test	with	a	new	set	of	problems	based	on	building	attributes	–	roof	shape,	roof	material	and	whether	there	are	solar
panels	on	roofs.	To	ensure	that	TopoNet	was	benchmarked,	we	repeated	these	inference	tests	on	a	network	trained	only	with	ImageNet,
as	well	as	the	FineTuned	and	ScratchTrained	networks.



Better	Results
It	is	hard	to	convey	how	keenly	the	results	of	this	new	set	of	inference	tests	were	anticipated.	They	were	to	be	the	validation	of	our	hunch
that	better	training	data	was	essential	to	creating	a	TopoNet	that	would	help	us	achieve	our	goals.	Our	first	sight	of	the	inference	results,
summarised	in	figure	4,	showed	that	our	approach	was	consistently	out-performing	the	ImageNet-trained	network.

We	are	now	working	on	an	even	better	dataset	for	training	TopoNet	and	looking	at	how	we	transfer	our	successes	into	a	production
operation.	We’re	developing	our	disparate	functions	and	scripts	into	a	tracked	and	versioned	repository,	automatically	recording	data
provenance,	with	principals	that	will	ultimately	support	the	reproducibility	of	our	research.	This	repository	is	making	it	simpler	for	us	to	apply
new	versions	of	the	training	data	and	develop	the	network	architecture	so	that,	ultimately,	we	can	produce	a	version	of	TopoNet	that	we
are	confident	is	capable	of	solving	a	range	of	inference	problems	and	discovering	new	ways	of	portraying	the	landscape.

Future	Work
We	still	have	a	long	way	to	go	in	terms	of	building	robust	approaches	to	interrogating	the	trained	network	to	understand	if	what	it	has
discovered	is	meaningful,	perhaps	even	useful.	We	also	need	to	‘prove’	what	we	are	doing	in	an	operational	environment.	But	it	is
satisfying	to	look	back	and	see	how	far	we’ve	come	from	a	somewhat	unformed	idea	in	2015.
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